
Abstract 

The mechanism that dictates the formation of dental calculus, an important component of periodontal 
health, has yet to be sufficiently explained. The effect of bacterial flora on dental calculus formation is 
important for periodontal status. Therefore, this study aims to investigate the mineral forming bacteria 
from subgingival calculus under anaerobic conditions.
Bacteria have been isolated from subgingival calculus, and isolates were examined for mineralization 
under anaerobic conditions. Bacterial isolates capable of crystal formation on plates were identified by 
their 16S rDNA sequences.
Bacterial isolates from subgingival dental calculus that form minerals in vitro have been identified as 
Streptococcus spp.
This is the first report to identify and show that bacteria from subgingival calculus under anaerobic 
conditions are involved in the formation of dental calculus.
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Introduction
Bacterial plaque is the primary etiologi-

cal factor affecting the development and 
progress of periodontal disease, particularly 
because bacterial plaques are commonly 
accompanied by the presence of dental cal-
culus [1, 2]. As well as forming a reservoir 
for toxic bacterial products and antigens, 
the dental calculus provides a porous en-

vironment for the retention and growth of 
the bacterial plaque and is a predisposing 
factor for the development and progres-
sion of periodontal disease [3,4]. Peri-
odontal breakdown is associated with the 
presence of dental calculus, and an increas-
ing dental calculus may increase the rate of 
damage that is related with plaque bacteria 
[1,4,5]. Subgingival [6] and supragingi-
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Abstract

Objective: To evaluate the changes in the number of Langerhans Cells (LC) observed in the epithelium of 
smokeless tobacco (SLT-induced) lesions. 
Methods: Microscopic sections from biopsies carried out in the buccal mucosa of twenty patients, who were 
chronic users of smokeless tobacco (SLT), were utilized. For the control group, twenty non-SLT users of SLT 
with normal mucosa were selected. The sections were studied with routine coloring and were immunostained 
for S-100, CD1a, Ki-67 and p63. These data were statistically analyzed by the Student’s t-test to investigate the 
differences in the expression of immune markers in normal mucosa and in SLT-induced leukoplakia lesions. 
Results: There was a significant difference in the immunolabeling of all markers between normal mucosa 
and SLT-induced lesions (p<0.001). The leukoplakia lesions in chronic SLT users demonstrated a significant 
increase in the number of Langerhans cells and in the absence of epithelial dysplasia. 
Conclusion: The increase in the number of these cells represents the initial stage of leukoplakia. 
Key words: Smokeless tobacco, leukoplakic lesions, cancer, langerhans cells, chewing tobacco.

Introduction

Among tobacco users, there is a false be-
lief that SLT is safe because it is not burned, 
which leads many people to quit cigarettes 
and start using SLT [1]. However, SLT con-
tains higher concentrations of nicotine than 
cigarettes and, in addition, nearly 30 carci-
nogenic substances, such as tobacco-specific 
N-nitrosamines (TSNA), which is formed 
during the aging process of the tobacco, [2-4] 
and which presents high carcinogenic poten-
tial. Moreover, because the tobacco has direct 

contact with the oral mucosa and creates a 
more alkaline environment, its products may 
even be more aggressive to tissue [5]. The 
percentage of SLT users is lower compared 
to cigarette users; however, usage is increasing 
among young individuals and it is therefore a 
significant and disturbing danger [6,7]. 

Initial studies on the effects of SLT on the 
oral mucosa demonstrated the formation of 
white lesions induced by chronic exposure to 
tobacco, characterized by epithelial thicken-
ing, increased vascularization, collagen altera-
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val [7] calculus formation is associated with the for-
mation of chronic inflammatory periodontal disease. 
Once formed, the presence of dental calculus may be 
inhibited by natural and mechanical oral hygiene, and it 
influences and enhances the growth of the pathogenic 
plaque [8].

Formation of calculus always appears due to the 
formation of the bacterial plaque, which produces the 
calcified plaque and an inorganic matrix. Following the 
tooth eruption or dental prophylaxis, various bacteria 
adhere to the enamel pellicle (adherence) [7]. In the 
mineralization of the dental plaque, calcium salt depos-
its or crystallization develop primarily on the intercel-
lular matrix and bacterial surfaces and then within the 
bacteria [9]. Calcifying oral bacteria were determined 
to be the initiator of mineralization in the tooth-gingiva 
junction [10]. Formation or integration of the calcu-
lus is associated with the bacterial composition of the 
plaque and the interaction between the bacteria and 
the environment [11]. In parallel with previous in vivo 
studies, in vitro experiments show that Corynebac-
terium (Bacterionema) matruchotii, Streptococcus 
mutans, Actinomyces spp., and Candida albicans are 
associated with mineralization in different intra- or ex-
tra- cellular cases [11,12].

Considering the composition of the dental calcu-
lus, especially the phosphate salts of the calcium, this 
is an area of great interest. The formation of calcium 
compounds of bacteria in different ecosystems has 
been intensively studied, with some underlying mecha-
nisms being suggested [11,13,14]. In vitro experiments 
using some bacteria were performed to explain the 
mechanism of the calculus formation. It was shown 
that Streptococcus salivarius and S. sanguinis increase 
the dental pH due to their arginine deaminase activity 
that generates urea and ammonium compounds [15]. 
Bacteria in the plaque increase the local pH; and when 
the pH increases, calcium-phosphate ions collapse [9]. 
Several experiments conducted with oral bacteria were 
performed in environments containing highly intensive 
ions and therefore they have remained quite limited. 
Even though the supragingival calculus is associated to 
pH changes, buffering systems, calcium sources (sali-
vary), food (nutritional residues), microbial diversity, 
and abundance (facultative anaerobes and aerobes) 

[4,7,16], the steps leading to formation of subgingival 
calculus remain unclear. 

The aim of this study is to isolate and identify the 
mineral forming bacteria from subgingival calculus un-
der anaerobic conditions. The features of the isolated 
bacteria that contribute to mineral formation in pure 
and complex cultures were investigated. The main pur-
pose of the study is to provide a new direction for stud-
ies investigating the formation of the dental calculus.

Materials and Methods
Collection of Samples
Subgingival calculus samples were collected from 

3 patients with periodontal disease (Atatürk Univer-
sity, Ethics Committee of Dentistry Faculty approval, 
2011/10) at the Department of Periodontology, Fac-
ulty of Dentistry, Atatürk University, as part of their 
conventional treatment. The collected samples were 
transfered to laboratory in phosphate buffer (pH 7.2) 
for bacterial isolation.

Bacterial Isolation and Growth Conditions
The samples were shaken in buffer (phosphate buff-

er pH 7.2) for one night, then cultured colonies were 
grown in B4 media (glucose 10 g/L, yeast extract 4 g/L, 
calcium acetate 2.5 g/L, and agar 18 g/L pH 7.2) [17], 
modified BHIA (BHIA 39 g/L, KH2PO4 2 g/L, and 
CaCl2 0.8 g/L pH 7.2) and B2 (glucose 1 g/L, yeast 
extract 1 g/L, casein 4 g/L, tris (tris(hydroxymethyl)
amino methane) 12 g/L, calcium acetate 1.5 g/L, and 
agar 15 g/L pH 7.4) (modified from Barış [14], Park et 
al. [18] and Roh et al. [19]) in an anaerobic jar at (37 
°C) and under anaerobic conditions (with Anaerobic 
Gas Pack, Oxoid, BR0038B). Following incubation, 
in vitro mineralization experiments were performed. 
Cultures were observed under the light microscope 
for 3–20 days and positive results were replicated from 
pure cultures for verification. Isolated and purified bac-
terial strains were stored in Nutrient Broth containing 
15% glycerol at −86 °C for further study [14,20]

Extraction of Genomic DNA
Genomic DNA was extracted from bacteria iso-

lates using a method previously described by Wilson 
[21]. The bacterial samples were inoculated on thy-
ripticase soy agar plates and incubated overnight at 37 
°C. The cells were harvested and suspended in 567 µL 
of TE buffer with 30 µL of 10% SDS and 3 µL of 20 
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mg/mL proteinase K. The bacterial suspensions were 
thoroughly mixed and incubated for 1 h at 37 °C. One-
hundred microliters of 5 M NaCl and 80 μl of CTAB-
NaCl was added and the mixture was kept at 65 °C for 
10 min. Approximately an equal volume (0.7 to 0.8 
mL) of chloroform:isoamyle alcohol (24:1) was added 
and tubes were shaken for 20 s and centrifuged at 12 
000 rpm for 5 min. The supernatant was transferred 
into a fresh tube, an equal volume (0.6–0.7 mL) of 
phenol:chloroform:isoamyle alcohol (25:24:1) was 
added and the tube was shaken for 20 s and centrifuged 
at 12 000 rpm for 5 min. The supernatant was transferred 
into a fresh tube and the genomic DNA was precipitat-
ed with isopropanol. The pellets were washed with 70% 
ethanol three times, dried, and suspended in 50 µL of 
TE buffer. The purity of the DNA was determined us-
ing a spectrophotometer and the A260 and A280 values 
and stored at −20 °C until further use [14,21].

PCR Amplification and Sequencing Analysis
The amplification reaction mixture was prepared in 

a 30 µL volume containing 3 µL 10× PCR buffer, 0.6 
µL dNTP mixture (10 mM of dATP, dGTP, dCTP, and 
dTTP, Sigma-Aldrich Co., USA), 0,3 µL each primer 
(5 µM) (27f 5′-AGA GTT TGA TCC TGG CTC AG-
3′; 1492r 5′-GGT TAC CTT GTT ACG ACT T-3′), 
1.8 µL MgCl2 (25 mM), 1.2 µL DMSO (20X), 0.3 µL 
Taq DNA polymerase (5 unit/µL, Sigma-Aldrich Co., 
USA), 21.5 µL sterile ddH2O, and 1 µL genomic DNA. 

The reactions were performed in a thermal cycler 
(Corbett Research CG1-96, Australia) without mineral 
oil. PCR master mix with ddH2O (instead of genomic 
DNA) was used as negative control. After an initial de-
naturation at 95 °C for 2 min, the PCR profiles were 
set as follows: 1 min of denaturation at 94 °C, 1 min of 
annealing at 58 °C, and 1 min extension at 72 °C, for 
35 cycles, and a final extension at 72 °C for 7 min. The 
samples were analyzed by electrophoresis on a 1% aga-
rose gel and then stained with ethidium bromide (0.5 
µg/mL). The PCR product bands were photographed 
under ultraviolet light [14,22].

PCR products were sequenced by Macrogen Inc. 
(Macrogen, Korea). Sequences were edited with the 
BioEdit program (Ibis Biosciences, CA, USA) and 
compared for similarities with the nucleotide sequenc-
es in the NCBI library [22,23].

Results
Bacterial Isolation and Biomineralization
The bacterial colonies from subgingival calculus 

were inspected under the light microscope on the days 
3, 5, 7, 10, 15, and 20 and the crystal forming colonies 
were transferred to new media. Each purified bacteria 
was monitored until day 20 and the experiments were 
repeated for the bacteria that exhibited crystallization. 

Six isolations were performed in B4 media, but be-
cause no crystallization was observed, this medium was 
not used in the remainder of the study. The medium 
that gave the best results for bacterial growth was mod-
ified BHIA. Although this medium did result in the 
formation of colonies, one bacterium developed fewer 
crystals than the rest; therefore, this medium was not 
used in subsequent experiments. We used B2 media in 
this study, which supported the formation of a larger 
colony number of the proper size of crystals. Biominer-
alization experiments were sustained by transferring 34 
colonies to a new medium; each colony was thought to 
be different in the B2 medium. Each biomineralization 
experiment using the 34 pure bacterial cultures was re-
peated. Of the initial 34, 16 isolates could form crystals 
(Figure 1).

Table 1. Identification results of mineral forming bacterial iso-
lates, which were obtained in the subgingival calculus.

Codes of 
Isolate

Names of 
Organism

Accession 
number

D1 Streptococcus mutans KC505240
D2 Streptococcus mutans KC628748
D3 Streptococcus anginosus KC628749
D4 Streptococcus gordonii KC628750
D5 Not detected -
D6 Streptococcus sanguinis KC628751
D7 Streptococcus gordonii KC628752
D8 Streptococcus gordonii KC628753
D9 Streptococcus constellatus KC628754
D10 Streptococcus constellatus KC628755
D11 Streptococcus sanguinis KC628756
D12 Streptococcus sanguinis KC628757
D13 Streptococcus anginosus KC628758
D14 Not detected -
D15 Streptococcus massiliensis KC628759
D16 Streptococcus gordonii KC628760

www.acesjournal.org
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Figure 1 - Crystal formations in pure and complex cultures in the B2 growth media. a – c)

mixed culture; b – d) different types pure cultures growth and cristalization.
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Figure 1. Crystal formations in pure and complex cultures in the B2 growth media. A – C) mixed culture; B – D) different types pure 
cultures growth and cristalization.

Identification of Bacterial Isolates (by Sequence 
Analysis)

	 Sixteen bacterial isolates, which formed crys-
tals in B2 media, were grown under anaerobic condi-
tions and DNA was isolated. The amplification of the 
DNA with 16S rRNA primers produced a single am-
plicon per sample with sizes of 1400–1500 bp on the 
gel. The obtained amplicons were sent to Macrogen for 
DNA Sequence analysis. The sequencing results were 
analyzed using BioEdit and compared by using the 
BLAST program and the Genbank (http://blast.ncbi.
nlm.nih.gov/Blast.cgi). Table 1 shows the obtained re-
sults and accession numbers.

Discussion
The calculus is a mineralized dental plaque whose 

inorganic components are surrounded with a non-min-
eralized bacterial plaque and mainly consist of calcium 
phosphate salts (e.g., dicalcium phosphate dehydrate, 
octacalcium phosphate, hydroxyapatite, and magnesi-

um-tricalcium phosphate) (Whitlockite) [2,5]. Even 
though the first phases of dental plaque formation 
(bacterial adhesion, accumulation and proliferation) 
can partially be explained [24], changes to the dental 
plaque bacterial flora have yet to be fully understood 
[25]. It is known that flora can play a part in the main-
tenance of homeostasis; however, some of these bac-
teria might cause diseases when homeostasis is dis-
rupted [26]. For example, it is known that S. mutans, 
which is commonly found in dental plaque, can cause 
tooth decay under some conditions [27]. Importantly, 
bacteria directly influence the pH level of the mouth. 
Some bacteria on the dental plaque produce ammo-
niac by urea hydrolysis, which makes the pH in the 
mouth mildly alkaline, optimal for calculus formation 
[5,28]. The increase or decrease of mouth pH can re-
sult in mineralization or demineralization, respectively. 
This occurs due to fluctuating calcium and phosphate 
levels of tooth surface and saliva and/or plaque [29]. 
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The collapse of calcium phosphate salts causes miner-
alization and, as a consequence, the formation of cal-
culus, a secondary factor for the development of the 
periodontal disease. The initial studies conducted to 
determine the mechanisms of bacterial mineralization 
were performed on Bacterionema (Corynebacterium) 
matruchotii [30], and it was concluded that phospho-
lipid fractions form apatite in the interior [31]. In or-
der to understand the nature of the calculus—as well 
as to explore bacterial mineralization—some groups 
have investigated the bacterial contents of the calculus. 
Living aerobic and anaerobic bacteria were identified 
on the supragingival calculus (especially in interdental 
canals and lacunas) collected from patients with mod-
erate and severe periodontitis [32]. On the subgingival 
calculus, the periodontal pathogens Aggregatibacter 
actinomycetemcomitans, Porphyromonas gingivalis, 
and Treponema denticola were identified in deeper 
cavities of the lacuna and canals [33]. Complex lipids 
produced by P. gingivalis were found on lipid extracts 
obtained from subgingival calculus [34]. 

The essential goals of this study were to investigate 
how bacteria affect mineralization and dental plaque 
formation as well as to address their effects on calci-
fication. The bacterial contents of the calculus do not 
indicate whether these bacteria are calcifying nor does 
it show the roles of bacteria on calculus etiopathology. 

The medium selection is critical to conduct the 
mineralization studies. The medium used should allow 
for the isolation and formation of minerals. In these 
experiments, the media used made it difficult to iso-
late bacteria due to its high calcium content and buff-
ered environment [17,20]. However, we were able to 
generate a medium that allowed for the observation 
of mineral formation from the obtained isolates. The 
B2 medium was designed based on previous literature 
[14,18-20,35] and the crystal formation was observed 
from day 3. However, this medium is not sufficient to 
culture most microorganisms that are present in the 
mouth and dental calculus flora. This probably explains 
why bacteria such as A. actinomycetemcomitans, P. 
gingivalis and T. denticola, which were previously iden-
tified on the calculus [11,12], could not be isolated in 
this study. Another reason why all microorganisms in 
this study were Streptococcus is that only these isolates 

could form minerals. The presence of Gram-positive 
bacteria in the mineralized calcium compounds is 
common [17]. In addition, other Streptococcus types 
in calcification, which are common oral flora bacteria, 
are rare. Streptococcus types are expected to be active 
during demineralization and tooth decay due to their 
fermentation capability, from which organic acids are 
produced; these, once released in the medium, de-
crease pH and deteriorate the enamel (calcifying struc-
ture) [36-39]. However, because the medium used in 
the study was buffered with calcium and tris, it enabled 
mineralization. Streptococcus species do not utilize 
urease activity because they require CO2 [36,40,41]. 
Thus, it is thought that they can participate in the calci-
fication by adhering to cell surface compounds, which 
is required for calcium precipitation and mineralization 
[42]. Considering the in vivo conditions in the subgin-
gival area (such as other microorganisms, anaerobic 
medium, immune system, gingival crevicular fluid, 
calcium density, and pH), the previously identified in 
vitro mechanism remains valid [43,44].

Since several Streptococcus types colonize both 
hard and soft tissues, they could encounter the oral 
flora and also infect various parts of the human body 
[27,45]. Streptococci are abundant on the hard tissue, 
coexisting with S. gordonii and S. mutans; and S. gor-
donii and S. sanguinis are leading causes of plaque for-
mation [46]. S. mutans is the most frequently isolated 
bacteria from the oral flora, the most common bacteria 
on decaying teeth, and found in atheromatosis plaques 
of the cardiac valve. S. mutans was found to be associ-
ated under different inter- and/or extra- cellular calci-
fication conditions [11,47]. S. sanguinis was observed 
with increased pH, and this condition correlates with its 
effect on mineralization [29]. Members of the S. mill-
eri group, S. anginosus, and S. constellatus, were found 
to be associated with purulent infections and not with 
mineralization [15]. In addition, S. constellatus formed 
denser colonies on and adhered more frequently to hy-
droxy apatite than they did with titanium [48]. There 
is a limited number of studies on S. massiliensis [49], 
one of the bacteria identified in this work. In particular, 
this is likely the first time the microorganism has been 
isolated from the oral flora.  

To our knowledge, this is the first report on the abil-
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ity of Streptococcus types to form minerals in vitro un-
der in anaerobic conditions. We also saw oral coloniza-
tion of the S. massiliensis type, which has recently been 
isolated from the blood and infected parts of patients. 
Our results support the idea that bacteria have a poten-
tial role in the etiopathology of the subgingival calculus. 

Consequently, the data not only present various 
explanations for the roles of bacteria in the subgingival 
area, but also raise several new questions requiring fur-
ther study.  
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